Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available August 1, 2026
- 
            Free, publicly-accessible full text available September 8, 2026
- 
            The measurement of neutralizing immune responses to viral infection is essential, given the heterogeneity of human immunity and the emergence of new virus strains. However, neutralizing antibody (nAb) assays often require high-level biosafety containment, sophisticated instrumentation, and long detection times. Here, as a proof-of-principle, we designed a nanoparticle-supported, rapid, electronic detection (NasRED) assay to assess the neutralizing potency of monoclonal antibodies (mAbs) against SARS-CoV-2. The gold nanoparticles (AuNPs) coated with human angiotensin-converting enzyme 2 (ACE2) protein as nAb potency reporters were mixed with the mAbs to be tested, as well as streptavidin-conjugated multivalent spike (S) protein or their receptor binding domains (RBD). High-affinity and ACE2-competitive nAbs alter the S (or RBD)-to-ACE2 binding level and modulate AuNP cluster formation and precipitation. The amount of free-floating AuNP reporters is quantified by a semiconductor-based readout system that measures the AuNPs' optical extinction, producing nAb signals that can differentiate SARS-CoV-2 variants (Wuhan-Hu-1, Gamma, and Omicron). The modular design nature, short assay time (less than 30 minutes), and portable and inexpensive readout system make this NasRED-nAb assay applicable to measuring vaccine potency, immune responses to infection, and the efficacy of antibody-based therapies.more » « lessFree, publicly-accessible full text available October 1, 2026
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Major challenges remain to precisely detect low-abundance proteins rapidly and cost-effectively from diverse biofluids. Here we present a gold nanoparticle (AuNP)-supported, rapid electronic detection (NasRED) platform with sub-femtomolar sensitivity and high specificity. Surface-functionalized AuNPs act as multivalent detectors to recognize target antigens and antibodies through high-affinity binding, subsequently forming aggregates precipitated in a microcentrifuge tube and producing a solution color change. The residual floating AuNPs’ optical extinction is digitized using customized circuitry incorporating inexpensive optoelectronics and feedback mechanisms for stabilized readout. NasRED introduces active fluidic forces through engineered centrifugation and vortex agitation, effectively promoting low-concentration protein detection and accelerating signal transduction. Using SARS-CoV-2 as a demonstration, NasRED enables detection of both antibodies and antigens from a small sample volume (6 µL), distinguishes the viral antigens from those of human coronaviruses, and delivers test results in <15 min. The limits of detection (LoDs) for antibody detection are approximately 49 aM (7 fg/mL) in phosphate-buffered saline (PBS), or >3,000 times more sensitive than Enzyme-Linked Immunosorbent Assay (ELISA), ~76 aM (11 fg/mL) in human pooled serum and in the femtomolar range in diluted whole blood. For nucleocapsid protein detection, NasRED LoDs are ~190 aM (10 fg/mL) in human saliva and ~2 fM (100 fg/mL) in nasal fluid. Unlike centralized platforms, NasRED is a one-pot, in-solution assay without the needs for washing, labeling, expensive instrumentation or highly trained operators. With low reagent costs and a compact system footprint, this modular digital platform is well-suited for accurate, near-patient diagnosis and screening of a wide range of infectious and chronic diseases.more » « lessFree, publicly-accessible full text available August 26, 2026
- 
            Free, publicly-accessible full text available April 26, 2026
- 
            Free, publicly-accessible full text available April 22, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            The physical workload evaluation of construction activities will help to prevent excess physical fatigue or overexertion. The workload determination involves measuring physiological responses such as oxygen uptake (VO2) while performing the work. The objective of this study is to develop a procedure for automatic oxygen uptake prediction using the worker’s forearm muscle activity and motion data. The fused IMU and EMG data were analyzed to build a bidirectional long-short-term memory (BiLSTM) model to predict VO2. The results show a strong correlation between the IMU and EMG features and oxygen uptake (R = 0.90, RMSE = 1.257 mL/kg/min). Moreover, measured (9.18 ± 1.97 mL/kg/min) and predicted (9.22 ± 0.09 mL/kg/min) average oxygen consumption to build one scaffold unit are significantly the same. This study concludes that the fusion of IMU and EMG features resulted in high model performance compared to IMU and EMG alone. The results can facilitate the continuous monitoring of the physiological status of construction workers and early detection of any potential occupational risks.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Free, publicly-accessible full text available March 4, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
